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Surface structure determination using x-ray standing waves: 
a simple view 
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Received 6 September 1994 

Abstract. In the appliwtio? of x-ray standing wave (xsw) methods to the determination of 
surface smctures, the experiment provides two s t r u n u d  parmeten: the coherent position 
and the coherent fraction. For simple, single-higt-symmerry-site adsorption systems, the 
interpretation of these parametea in terms of a structural model is trivial, but in the case 
of lowersymmeby adsorption sites, or multiple adsorption sires (including those associated 
with coincidence lattice structures). these parameters axe related to spatial distribution functions 
through a Fourier integral. A particularly simple way of viewing this result, in terms of 
vector (Argand) diagrams, allows many simple eases and general thearems conceming the 
interconnection of the swcture and the xsw fitting parameters to be visualized. The application 
of this approach is illustrated with parricular reference to recent studies of adsorption on wc 
(1 11) metal surfaces, but some generalization to other surfaces is included. 

i. Introduction 

The quantitative determination of surface structure, and especially of the location of 
adsorbate species on well-characterized crystal surfaces, is one of the central objectives 
of many investigations in surface science; knowledge of structure is a key prerequisite 
for understanding many aspects of the electronic and chemical properties of surfaces. 
Techniques for investigating surface stmcture fall broadly into two categories. Diffraction 
methods, most notably low-energy electron diffraction ( E D )  [1,2], but also surface x- 
ray diffraction [3,4], exploit in a very direct, way the two-dimensional long-range order 
associated with many surface structures, and have proved extremely successful in providing 
a large part of the existing data-base of ‘solved’ structures. Other methods, which can rather 
loosely be described as ‘non-diffraction’ techniques, such as ion scattering [S, 61, surface- 
extended x-ray absorption fine structure (SEXAFS) [7,8] and photoelectron diffraction [9,10], 
rely only on local short-range order, and do not specifically exploit the long-range order. 
Such methods are obviously of especial importance when there is no long-range order in an 
adsorbate layer, as is commonly the case for molecular adsorbates. A further method that 
falls into the latter category is x-ray standing-wavefield (xsw) absorption [II ,  121; although 
this technique is specifically based on diffraction in the sub-surface and bulk of a crystal, it 
does not rely on long-range order in the adsorbate, the location of which is to be determined. 

While it is common to distinguish between these diffractive and (essentially) non- 
diffractive methods in terms of their requirement for long-range order in an adsorbate layer, 
there is another important aspect to this difference. Diffraction methods are we11 known to 
select the long-range ordered part of a surface, because the diffracted beams are dominated 
in intensity by these parts of the surface; the scattered intensity from any disordered parts 
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of the surface is distributed throughout momentum-space and thus connibutes relatively 
little at the diffracted beam locations. This means that if a surface contains regions of 
good long-range order, and regions of only local order (or complete disorder), a diffraction 
method will provide unique information on the structure of the long-range-ordered parts 
alone, whereas the non-diffractive methods will provide some incoherent average of the 
structure of all parts of the surface. This difference is clearly of some potential importance; 
the fact that the bulk of our structural data-base still derives from diffraction methods may 
give us a misleading view of the perfection of surface structures, and indeed over the last few 
years scanning-probe microscopies have highlighted the relatively poor average quality of 
many surfaces. One important question that must be addressed by non-diffractive methods 
is therefore the local structure of parts of the surface that lack long-range order but that 
coexist with long-range-ordered domains. 

In this respect, x-ray standing-wave methods do provide some explicit information on 
this problem, and this is one of the issues that we address here. More generally, however, it is 
of interest to understand how the xsw methods combine information from multiple sites, and 
how the original smctural information might be extracted from the results of experimental 
measurements. The basic mathematics underlying this problem has been presented by other 
authors over the past 5-10 years of application of the technique (see, e.g., [12-151 and 
references therein). Some of the simple ideas involved, however, can be obscured by this 
mathematics, and our object here is to try to present the information in a simple form in 
order that some general properties can be easily appreciated. 

2. Basic theory 

In this section we rehearse the basic underlying physics of the xsw experiment, and 
summarize the mathematical description (which has been derived by others-see, e.g., [12- 
151) in a fashion convenient to our later applications. We emphasize in our discussion 
the normal-incidence xsw (NIXSW) method which we have used in a range of adsorption 
studies, but remark on the zeneralization of the main results. 

When an x-ray Bragg reflection is established in a crystal, the diffracted wavefield 
interferes with the incident wavefiela to produce a standing wave; the periodicity of the 
intensity of this standing wave is equal to the spacing of the equivalent scatterer planes 
(for a first-order diffraction event), and in the simple case of a single diffracted beam and 
a non-absorbing crystal, we have the classical two-beam interference problem, with the 
intensity varying spatially between zero and four times that of the incident beam alone 
(Io(1 f 1)2). A full dynamical analysis of the diffraction 1161 which takes account of 
the attenuation of the incident x-ray wavefield as it penetrates the solid and more flux is 
removed through backscattering out of the surface, shows that the finite penetration leads 
to a finite range (and offset) in incidence angle or wavelength, over which total reflectivity 
is obtained and the standing wave is produced. Within this range, however, the phase of 
the standing wave shifts in a systematic way relative to the scatterer planes by half the bulk 
layer spacing. By monitoring the absorption of x-rays by adsorbed atoms (distinguished 
by their elemental identity) as this standing wavefield shifts, one can deduce the location 
of the absorber relative to the (extended) bulk scattered planes. This provides the basic 
measurement of the xsw method; the x-ray absorption at the adsorbate is monitored via 
photoemission, Auger electron emission or x-ray fluorescence, as the incidence angle or the 
photon energy is scanned through the nominal Bragg condition. 

In the particular variant of the method that we have exploited, the Bragg condition is 
always excited at (or very close to) normal incidence to the scatterer planes. Under this 
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condition, the Bragg condition passes through a turning point in its dependence on incidence 
angle ( 2 d ~  sin e = A at 6 = 90") and is therefore insensitive to small variations in incidence 
angle due to crystal mosaicity, and to limited incident-beam collimation [ll, 171. As such 
the method is applicable to normal metal single-crystal samples. At more general incidence 
conditions there is greater flexibility over the x-ray wavelength, but the method is only 
applicable to very perfect crystals; under these conditions the great majority of surface 
studies have been performed on silicon [12]. 

The basic equation governing the experiment is that which defines the intensity of the 
standing wave at a particular point in space, characterized by a spacing z relative to the 
extended bulk scatterer planes (which themselves have a periodicity dH,  where the suffix 
H denotes the indices of the reflection): 

I = 11 + (E~/Eo)(eXp(-2niZ/d~))I*. (1) 

The amplitude of the electromagnetic scattered wavefield relative to the incident one, 
E H / &  is just the square root of the reflectivity, R, multiplied by a phase factor, say 

E H / E o  = &exp(ip). 

This means that we can write 

I = 1 + R +2,/5Fcos(p - 2ad/D). (2) 

Note that R and p are both functions of the photon wavelength (or the incidence angle), 
and they vary as one sweeps through the Bragg condition to provide the xsw profile. 

This analysis is for a single position, so it strictly only applies to an absorber at a single 
site on a rigid lattice. Suppose, instead, that we have some distribution of possible positions 
which may be due to vibrational or static disorder, or to several different discrete sites, or 
both. We can represent this by a distribution of z-vdues, with a probability of a given value 
being given by, say, f ( z ) &  within a range dz about the value z. Notice that if this is a 
proper probability it is normalized such that 

f(z)dz = 1. I" (3) 

In this case, the XSW absorption profile will be given by 

dx 
I = 1 + R + 2,/5F 1 f (z) cos(p - 2.nz/dH) dz (4) 

which can also be written as 

I = 1 + R 2 f C Q A  COS(p - 2ZD fdH) 

in terms of two parameters, the coherent position, D, and the coherent fraction fco. These 
two parameters totally define the structural dependence of the measured absorption profile, 
and are thus the parameters that emerge from the analysis of the experimental data. 

An altemative way in which equation (5) is often written is 

I = (1 - &.)(I + R) f &-(I+ R + 2 f i  COS(q - %D/dH)) (6) 
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which highlights the fact that the absorption profile comprises a coherent part of identical 
format to that for a single position (equation (2)) attenuated by the factor fco, and an 
incoherent part which is simply the sum of the incident and reflected beam intensities, 
multiplied by a factor 1 - fco. 

The equivalence of equations (4) and (5). means that the connection between these 
measured quantities and the actual spatial distribution function is given by 
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This equation tells us that fw is simply the first Fourier component in a Fourier series 
representation of f(z), but it also contains the coherent position through a phase factor. A 
more convenient way of representing this information is by using complex numbers. To 
derive this modification of equation (7), we expand the cosine sums to give 

cos Q fco cos(2zD/d~)  +sin (o fo sin(2xDldH) = cos (o 1 f(z) cos(2zz/d~)  dz 
dit 

+ Sin (o ld" f (Z)  Sin(2irZ/d~)dz. (8) 

As this expression must be true for all values of the phase Q, which varies as one 
scans through the Bragg condition, and because sine and cosine have opposite parity, this 
expression can only be satisfied if both the coefficients of sin Q and cos Q can be equated. 
Thus the two conditions are separated to give 

and 

An alternative way of writing this condition that both equations (9a) and (9b) are satisfied is 
to multiply equation (9b) by i (i.e. A) and to sum the two equations which then become 
a complex expression for which both real and imaginary parts must be equal. This gives 
the required altemative form 

ds 
fo exp(2niDjd~)  =~/ f(z) exp(2zizld~)  dz. (10) 

An important attraction of this final formulation is that one can use it to construct a 
simple graphical representation of the way in which the measured quantities fco and D 
relate to the integral over a real spatial distribution function. This is achieved using an 
Argand diagram-each layer spacing in the spatial distribution is represented by a vector, 
the direction being defined by the phase angle 2 x z / d ~  relative to the positive x-axis, while 
the length is f(z) which is the probability of this value; the resultant (the vector sum of 
these components) is a vector of length fco and phase angle 2 z D / d ~ .  In the following 
section we explore some results obtained through this visualization. 

0 
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3. Some stmetures and their xsw parameters 

3.1. Thermal vibrations and local disorder 

One essentially unavoidable deviation, which any real structure must possess relative to the 
ideal, single-site, rigid-lattice situation that underlies equation (2) (in which the coherent 
fraction value is implicitly unity), is that there will be thermal vibrations. These actually 
influence the result in two ways. One is that the vibrations of the substrate scatterers 
attenuate the diffracted beam intensity by a Debye-Waller factor, and introduce an incoherent 
component to the standing wavefield itself. This is actually equivalent to reducing the value 
of fw by this DebyeWaller factor; this bulk lattice contribution is predictable and can 
be separated out from the unknown spatial distribution function of the absorber atoms. 
The second influence of thermal vibrations is to introduce a finite width in the adatom 
distribution function, f (z) ,  which is normally represented by a Gaussian function. Evidently 
the resulting dephasing of the absorber layer spacing will introduce an incoherent part to the 
absorption profile which grows as the vibrational amplitude, and thus the Gaussian width, 
grows. The effects of this through equation (1) can be readily represented on an Argand 
diagram as seen in figure 1. Notice that, providing the distribution function is symmetrical 
about its mean position, the resulting coherent position will be unchanged, and only the 
coherent fraction is affected. If, on the other hand, the disnibution is asymmetric, as would 
result from anharmonic vibrations, then the resultant will be displaced as the distribution 
broadens. As yet, there appears to have been no experimental observation of this effect, 
but anharmonicity in adsorbate vibrations at surfaces is likely to be a common phenomena 
Wl. 

Figure 1. An Argand diagram vector representation of the coherent fraction and coherent 
position for a single (rigid) adsorption site (a), and for the components (b) and resultant (c) for 
the same situation with a Gaussian distribution of positions due to thermal vibrations. The real 
and imaginary axes are marked R and I .  

The physical consequence of the influence of harmonic vibrations of the absorbing atoms 
in xsw is well known, and can be included through a (further) absorber Debye-Waller factor 
which attenuates f0. The xsw, of course, is only sensitive to the component of the atomic 
displacement perpendicular to the scatterer planes (which thus leads to variations in z). AU 
of these considerations apply equally to static disorder involving local displacements about 
some mean positions. 
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3.2. 7ko (or more) equally weighted adsorption sites 

A second relatively simple case concerns the possible occupation of two distinct adsorption 
sites on a surface; this may arise because two sites have similar energies, because the 
adsorbate is adsorbed in two layers, or because one has an adsorbed molecule containing 
two atoms of the same species that adopt inequivalent sites. The simplest form of this 
problem is when the two sites have the same probability or weighting. In this case, we 
must sum the effects of two spacings z1 and 22; in the case of a perfect rigid lattice and 
discrete sites we can attribute individual f-values of their formal weighting, 0.5 to each, 
and the integral of (10) reduces to a sum of these two values. If we include the effects of 
local disorder and thermal vibrations, then we have two peaks in the distribution function 
f ( z ) ,  but the integral over the full distribution function can be written as a sum of integrals 
around each peak. If the vibrational and static disorder are the same for both sites, the 
individual peaks can then each be assigned the same f-values of fo which will be the 
formal weightings (0.5) reduced by the disorder as described in the previous section. In 
effect, therefore, these fo become the weighting multiplied by the value which the coherent 
fraction would be if only one of these sites was occupied. The resulting xsw profile is then 
characterized by 
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D = (21 -k Z2)/2 fco = fol COs(X(Z, - ZZ)/dH)I. (11) 

The general result is thus that the coherent position is just the average of the two layer 
spacings (figure 2(a)) while the coherent fraction falls as the layer spacing difference 
increases. This highlights the fact that with a single xsw profile only, one cannot distinguish 
between a large vibrational amplitude and two distinct layer spacings symmetrically 
positioned about the same mean layer spacing. (Notice that the simplicity of equation (11) 
is lost if the two sites have different fo-values due either to different occupation weightings 
or to different local disorder.) One particularly interesting consequence of equation (l l) ,  
however, is that if the two layer spacings differ by dH/2, the resulting coherent fraction is 
zero! The Argand diagram picture shows this rather graphically (figure 2(b)), because the 
two vectors are qual and opposite and so cancel in this case. The related mathematical 
result is that if one samples a pure harmonic function at intervals of half the period, the 
sum is always equal to the average value of the function; i.e. it is incoherent. 

A particularly common case in which there is a need to sum two equally weighted layer 
spacings in xsw arises for the absorption signal associated with bulk atoms of an elemental 
crystal having an atomic basis for two-atom. Silicon (and any material having the diamond 
structure) is such a material. For example, if we consider the (111) reflections from Si, 
the structure actually comprises double layers of (1 11) Si planes separated by a quarter of 
the separation of the ‘Bragg planes’; for this reflection therefore, (z1 - zz)/dH = $, so 
6. = 0.71fo. Thus, the bulk (111) reflection from a perfect Si crystal at zero vibrational 
amplitude would still only give a coherent fraction of 0.71. We should note, however, that 
in the case of smctures having an atomic basis of more than one atom, D = 0 need not 
lie on an atom plane. For the Si( 11 1) case, for example, D = 0 lies midway between the 
double layer of atom planes (passing through the centres of symmetry of the crystal). For a 
material having an atomic basis of two inequivalent atoms, such as the zincblende structure 
semiconductors (including, for example, GaAs), it is, of course possible to distinguish the 
two components of the double layers by their elemental identity, but in this case an added 
complication is that the centres of symmetry are lost and the effective positions of the 
‘Bragg planes’ or ‘scattered planes’ depend on the individual scattering factors. Indeed, near 
absorption edges, where the imaginary part of the scattering factors can change strongly, 
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0.5 

Figure 2. The summation of contributions from two equally weighted layer spacings shown in 
the Argand diagram representation: (a) shows the wmponents and resultant for the general case; 
(b) shows the special case of WO components with layer spacings differing by half the bulk 
layer spacing. Both diagrams assume no disorder or vibmkions for the individual contributions. 

this 'zero' location can be sensitive to the exact photon energy [19]; this complication does 
not bear, however, on the problem of how to combine different absorber contributions with 
which we are concerned in this paper. 

A further important class of problem in which one may be required to sum over two (or 
more) equally weighted layer spacings can occur in xsw triangulation experiments. In the 
application of xsw to the determination of a surface structure, the most obvious experiment 
(albeit not a totally necessary one) is to set up a reflection from the scattering planes parallel 
to the surface such that one measures a coherent position, which, in the single-site situation, 
is simply the layer spacing perpendicular to the surface. In order to determine the adsorption 
site, however, it is necessary also to measure the layer spacing relative to a second set of 
scatterer planes that are not parallel to the surface. The combination of the two layer 
spacings provides the absolute adsorbate site by a simple real-space triangulation [ZO]. 

An example of this approach (which is now standard in xsw methodology) is a series 
of studies that we have conducted on FCC (111) metal surfaces (Cu, Ni, AI) using the 
(111) reflection (planes parallel to the surface) and the ( i l l )  planes (tilted at 70.5" to the 
surface) (see, e.g., [21-251). In this case, for a given (111) layer spacing, D(111), one 
can readily calculate the values of the ( i l l )  spacing to be expected from the three possible 
high-symmetry sites that retain the 3m symmetry of the substrate (we will consider lower- 
symmetry sites in the next section). These sites are atop and the two threefold-coordinated 
hollows directly above a substrate atom in the second layer ('HCP' hollow) or the third 
layer (LFCC' hollow). Because these three sites correspond respectively to atop a first-, 
second- or third-layer substrate atom, and cos(70.5") = f ,  it is easy to show that the 
appropriate ( i l l )  layer spacings for the three sites are D(111)/3, (D(111) +d(l l l ) ) /3 ,  
and (D(111) + 2d( 11 l))/3 (figure 3). Notice that the three associated vectors on an Argand 
diagram differ in phase by steps of 2n/3, so an equally weighted sum of all three would 
give a coherent fraction of zero (figure 4(a)). In reality, of course, if all three sites were 
equally~occupied, the atop site would have a larger value of the (111) layer spacing than 
the hollow sites, so this would not arise. What is perfectly possible, however, is partial 
(or equal) occupation of both HCP and FCC hollow sites; such a situation is known to occur 
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in some ordered phases involving more than one adsorbate species per unit mesh (e.g. the 
c(4 x 2) phase of CO on Ni(l11) [2&228]) or at low coverages (e.g. I on Ag(l11) [29]). 
For this double-hollow case, application of equation (11) shows that the ( i l l )  coherent 
position would simply be the average of the predicted layer spacings for the two hollows, 
(D(111) + 1.5d(ll1))/3, and the coherent fraction would be reduced to half of the value 
expected for exclusive occupation of either site alone (figure 4(b)). 

D P Woodruff et a1 

(iii) planes 
Figure 3. L211) sectional diagram of a FCC (111) crystal surface, showing the relationship of 
( I  1 I) and (1 I I) layer spacings for the three fully symmeuic adsorption sites. 

The cancellation effect of several equally spaced layer spacings is actually a general 
result of some potential importance. Consider the case of a coincidence lattice (or more 
properly, a rationally related overlayer mesh) adsorbate structure. In its ideal form such 
a structure has an adsorbate sub-mesh with a periodicity such that m units of this mesh 
match n units of the substrate mesh (where m and n are integers). Figure 5(a) shows a 
two-dimensional illustration of such a structure in which seven overlayer spacings match 
six substrate spacings. If we now consider any xsw in which the scatterer planes are not 
parallel to the surface, or parallel to the azimuthal direction of this unit mesh match, the 
individual layer spacings of the different adsorbate sites will involve regular increments that 
are rational fractions of the bulk layer spacing for this reflection (in the example of figure 5, 
these increments are six sevenths of the bulk layer spacing). In such a case, the vector sum 
over their contributions to the xsw leads to a coherent fraction of zero (figure 5(b)) in exactly 
the same way as found for the two spacings differing by half a bulk layer spacing, and the 
three spacings for the (711) reflection from a FCC (111) surface with equal numbers of atop, 
HCP and FCC hollows at the same (1 11) layer spacing. Of course, in a real coincidence 
lattice overlayer, we can expect some deviation from the perfect adsorbate sub-mesh via 
small movements of individual adsorbates parallel and perpendicular to the surface, but we 



Surface structure determination using x-ray standing waves 10641 

can still anticipate that the resulting coherent fraction will be low if many inequivalent sites 
are involved. 

Figure 4. Argand diagram vector representation of the (ill) xsw contributions for different 
combination of mixed adsorption sites on a KC (11 1) surface: (a) shows the hypothetical case 
of equal occupation of all three fully symmetric sites (figure 3) at the same (I 11) layer spacing; 
(b) shows the case of equal occupation of HCP and KC hollows only. me axis scaling assumes 
perfect order in all sites. 

Figure 5. A schematic diagram showing the situation for xsw experiments involving scatterer 
planes that are not paallel to the surface, in the case of a 'coincidence lattice' or rationally 
related overlayer case: (a) shows a sectional view of the StNCtW in which Seven overlayer 
spacings match six substrate spacings (note that the overlayer atoms are equally spaced w i h  a 
period of six sevenths of the bulk layer spacing for this off-normal set of scatterer planes): (b) 
shows the resulting Argand diagram vector representation of the adsorbate layer components. 
which exactly cancel. Individual adsorbate atoms within a coincidence unit mesh, and their 
contributions to the xsw coherent fraction and position, are indicated by h e  numbers. The 
relarive orientations of the contributions do not depend on the adsorbatedubstrate registry. 
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3.3. Low-symmety adsorption sites a& domain averaging 

In discussing the problem of adsorption site identification through xsw triangulation in 
the previous section, the presentation was limited to the case of adsorption sites having the 
same point group symmetry as the substrate. The reason for this restriction was to avoid the 
problem of domain structures on surfaces. If the local structure of any surface has a lower 
point group symmetry than the substrate, it is clear that several different structures must 
have an equal probability of occurring; these different structures are related by the point 
group symmetry operations possessed by the substrate but not the surface. The consequence 
is that we expect the surface to be covered by small domains of these different structures 
which, on average, will be equally occupied. For example, we expect three inequivalent 
domains of a rectangular 2m surface phase on a 3m K% (1 11) substrate. From the point of 
view of xsw, this means that each low-symmetry site on the surface will contribute several 
z-values to any reflection involving scatterer planes not parallel to the surface. 

As an example of this effect, consider again the problem of (i l l)  xsw from adsorbates 
on an FCC (111) surface. One local site that has a reasonable degree of local symmetry, 
and is certainly proposed for some adsorbates on these surfaces, is the bridge site midway 
between two nearest-neighbour surface atoms. This site has only 2m symmetry and so there 
are three inequivalent domains, which actually lead to two different ( i l l )  layer spacings; 
one with a weight of 4 has the value D(111)/3 (the same as for an atop site), while the 
second, with a weight of $ (corresponding to the other two possible domains), has a value 
D( 11 1)/3 + d(lll)/2. These two differ by half the bulk layer spacing, and thus have xsw 
contributions represented by opposing vectors in the Argand diagram, but the length of the 
double second is twice that of the first, so the result is a coherent position equal to that 
of the doubly weighted domain, but with a coherent fraction of a third of the individual 
values (figure 6). Note that this is a case in which the coherent position is not some simple 
weighted average of the contributing layer spacings (as one might have expected from a 
generalization of equation (1 1)). 

Figure 6. Argand diagram vector representations of the (ill) xsw conuiburions for fix three 
different domains of bridge site on a FCC ( I  11) surface: (a) shows the contributions. (b) shows 
the resdtiult. The axis scaling assumes perfect order in all sites. 

A further consequence of domain averaging effects for xsW measurements using planes 
not parallel to the surface is that displacements of atomic locations parallel to the surface 
away from the high-symmetry sites introduce several inequivalent layer spacings and thus 
lead to a reduction of coherent fraction. Evidently the exact effect depends on the site, the 
azimuthal direction of the displacement, and the azimuthal directions of the x-ray scattering 
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planes, but for small displacements (< 0.2 A) the effect on the coherent position relative to 
the ideal high-symmetry site is minimal, and only the coherent fraction is changed (reduced) 
significantly. 

Domain averaging does also impinge on complex surface mesh structures having several 
inequivalent sites per unit mesh, such as the coincidence lattice smctures mentioned in the 
previous section. In these complex phases, it is often found that local structural techniques 
(such as sw[mS) are able to provide some information on the structure within the outer 
layer (which is often a mixed substrate/adsorbate ‘compound‘ layer), but are less able 
to establish adsorbatdsubstrate registry. By contrast, xsw is evidently sensitive only to 
adsorbatelsubstrate registry. In the absence of domain effects, one general result highlighted 
by equation (IO) and its vector representation is that for a given adsorbate layer (with 
fixed relative positions), the coherent fraction of any xsw experiment is independent of 
the location of this layer relative to the substrate. This result is based on the fact that the 
relative phases of the component vector contributions itom the different adsorbate sites are 
unchanged by moving the layer rigidly over the surface, and all the vectors rotate by the 
same amount. The length of the resultant is therefore unchanged. Of course, the direction of 
the resultant, and thus the coherent position is changed. This simple result is lost, however, 
as soon as domain averaging is included. Even for a simple overlayer, moving it parallel to 
the snrface moves adsorbate atoms to low-symmetry sites necessitating domain averaging, 
and in this case the relative phases of the vector contributions from the different phases do 
change as the layer is moved (indeed, one finds that the contributing vectors from some 
of the different domains rotate in the opposite sense, an effect that clearly changes both 
the length and phase (coherent fraction and position) of the resultant). Such effects can 
therefore only be modelled numerically. 

4. General discussion and condusions 

The potential of xsw for structure determination has been recognized for many years, and 
it has been applied to surface structural problems for almost 15 years. Recognition of the 
basic significance of the coherent fraction and position resulting from xsw measurements, 
a necessary prerequisite for the application of the method, is therefore clearly not new. 
What~we have shown here, however, is that by considering the component contributions as 
vectors on an Argand diagram representation of the Fourier integral of equation (lo), many 
specific and general results relating to the interpretation of these xsw parameters can be 
obtained in a particularly simple and pictorial fashion. We have identified some examples 
of the application of this approach, both to specific problems such as doublesite occupation 
and the interpretation of hiangulation experiments on FCC (11 1) surfaces, but also to general 
problems such as the coincidence lattice structures, the insensitivity of the coherent fraction 
to the adsorbate-substrate registry for singledomain structures, and the influence of domain 
averaging. Other applications can be envisaged for the analysis of different problems; for 
example, a measured coherent fraction and position define the resultant Argand diagram 
vector, and if one has some specific constraints on the possible structural models (one 
particular site is partially occupied, or only two sites are occupied), one can understand the 
range of possible solutions better. We therefore envisage a utility to this approach beyond 
the specific examples given here. 

Some comments may also be in order concerning the problem that we posed in the 
introduction to this paper, namely the possibility that surfaces apparently yielding good 
(LEED) diffraction patterns (‘having good long-range order’) may comprise only a (small) 
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fraction of long-range-ordered domains with the remainder of the surface being in some 
sense disordered. Moreover, diffraction methods are not only good at picking out the 
regions of long-range order, but also picking out averuge long-range order in regions that 
also contain local defects (‘disorder’). Clearly xsw, like all other local structural methods, 
will provide information that is based on an incoherent average of the different local sites. 
A clear signature of such multiple sites (if, indeed, the ‘disordered‘ regions do involve 
different local sites) is a reduction in the coherent fraction, possibly coupled with a change 
in the coherent position relative to that expected for the long-rangeordered structure. The 
exact result evidently depends on the nature of the structure of those regions of the surface 
that lack long-range order. 

We envisage three different possibilities for these regions. One is me disorder, in which 
adsorbed atoms lie in ‘random’ sites. Such a situation would lead to a constant background to 
f(z), and thus to a pure incoherent contribution to the resultant xsw absorption profile. One 
could envisage this true disorder resulting from substrate disorder and distortion (damaged 
regions, a high density of small-angle grain boundaries etc), but it seems unlikely that it 
would arise from a sub-monolayer chemisorbed layer on a perfect sub-surface. In this case 
one would expect well-defined local adsorption sites even in the absence of long-range order 
in the adsorbate layer. Surface defects (vacancies, steps) would contribute additional sites, 
but would still correspond to a finite set of distinct sites. A second possibility is that these 
regions lack long-range order but involve the same local sites as the long-range-ordered 
domains that give rise to the diffraction pattern. There are many chemisorbed systems in 
which the local site is thought to be independent of coverage, so this situation may be 
quite common. The local techniques would then yield essentially the same conclusions 
concerning the local structure as the diffraction methods (and xsw would see no associated 
reduction of coherent fraction); all methods would thus be consistent. A third possibility is 
that the regions that lack long-range order involve different local adsorption sites from the 
ordered regions, either because of local coverage differences or some other incipient phase 
transition. In such a situation, local methods can lead to structural conclusions that are quite 
different from those given by the difiaction techniques; in xsw a lowering of the coherent 
fraction is a signature of possible multiple sites of this kind. Our recent Nxsw studies of 
the Al(111) (A x 8)R3O0-Rb phzes~at  low and high temperatures [30], compared with 
data obtained by L E D  from a similar study [31], provide an example of such a situation. 
In such cases xsw may add substantially to our broader understanding of surface structure 
in a way not accessible to true diffraction methods. 
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